41. 样品管都有哪些规格?样品管和填充棒的选择原则是什么?
一般厂家都能提供6mm、9mm 和12mm 管径的多种规格样品管。管径越细,死体积就越小,测量精度也就越高,但装填样品时比较困难。所以,要根据样品情况,权衡利弊,酌情使用。
减小冷自由空间是所有仪器设计制造人员的共识。所以,选择样品管时,都遵从“尽量使用填充棒、尽可能细的样品管颈、尽可能小的样品舱”原则。
除此之外,还需综合考虑如下因素:
1) 样品形态的影响:对于粉末样品,尤其是低密度的粉末样品,如活性碳等,在抽真空的过程中粉末扬起会引起分析结果不准确,如果粉末沾染到O 形圈将造成系统漏气,一旦粉末进入系统歧管还将引起更加难以修复的系统污染。因此,对于这类样品推荐使用管颈相对较粗、样品舱相对较大的管子,并且不推荐使用填充棒。而对于大颗粒、高密度样品,如金属、某些分子筛等,受抽真空力影响较小,不会引起系统污染,因此选择样品管就可以直接遵从首要原则,“尽量使用填充棒、尽可能细的样品管颈、尽可能小的样品舱”。
2)分析类型的影响:对于微孔材料的孔径分析,由于实验起始压力相对低(通常从相对压力10-7/10-6 区段起始),在低温下分子扩散速率较慢,加之气体非理想性对数据采集的影响较大,因此推荐不使用填充棒,以减少实验误差。对于介孔段的孔径分析以及比表面积测试,由于气体非理想性对数据采集的影响极小,因此使用填充棒反倒是可以提高实验结果的准确性。
3)样品比表面积的影响:对于小比表面样品,在试验过程中所需样品量较大,通常需要几克甚至十几克。这种情况下,为保证实验的准确性,应注意的是样品量不要超过样品舱(直管、小球或大球)总体积的2/3。此外,若小比表面样品还具备1)中所提到的密度小的特性,那么也不推荐使用填充棒。样品管的选择经验有如下参考:
9mm 样品管是最常用的样品管,适合大部分样品;
标准样品管用于颗粒样品及常规比表面分析;
大球样品管用于粉末样品及低表面样品分析;
6mm 样品管对于高精度的微孔分析是非常必要的。
42. 什么是歧管?它对仪器测量精度有何影响?
歧管(manifold)是物理吸附分析仪中连接进气端口、真空系统、压力传感器和样品管等的多支路管路系统。歧管体积是计算物理吸附初始进气量的依据之一。这部分体积固化在仪器内部,可通过校正得到精确数值。另一方面,吸附质气体在扩散过程中压力差越大,则气体绝对量计算越准确。因此,歧管体积越小,则仪器精度越高。
43. 为什么要记录歧管温度?歧管温度控制对测量精度有什么影响?
在理想气体方程中,体积、压力均为温度的函数,因此,准确的系统温度也是吸附量准确计算的一个基础。通常系统温度是通过与歧管相连的温度传感器实时记录的。目前市售的大部分仪器大多使用精度±0.1 ℃的温度传感器,均可满足实验精度的要求。
但是必须指出的是,最新的仪器设计趋势是所谓“高分辨微孔分析”的技术,该类型仪器均采用0.1torr 压力传感器采集低压区数据,以使在高真空区域(相对压力<10-6)的数据分辨率和稳定性更高。但是,该类型传感器对温度变化更为灵敏,因此,为了获得数据的高稳定性,需要特别配置更为稳定的系统温度,例如采用系统加热的方式,保持歧管恒温在50 ℃,避免温度波动。
如果是静态高压吸附系统,歧管温度波动±0.5 ℃,就会造成吸附量计算的明显误差(如±0.3mol@CO2),因此要求对歧管温度的控温精度在±0.1 ℃以内。
压力传感器作为静态容量法的基本计量单元,应该自身都有电子陶瓷恒温系统。如果选用没有恒温装置的压力传感器,虽然成本较低,但压力测量精度也会极低,就没有可能测量10nm 以上的较大介孔分布。
44. 在分析过程开始前,为什么要除掉氦气?
在用氦气测量死体积时,是基于氦气不吸附的假设。但事实上,物理吸附是非特异性吸附,对任何气体都存在吸附,因此,某些材料,特别是微孔材料会吸附较多的氦气,其影响无法忽略不计,也就是存在氦污染。氦污染的典型现象是吸附等温线在P/P0<10-5 以下时出现“S”线形。因此,对于这种情况,应该关心死体积测定后,是否经历了除氦过程,再进行等温线测定;或在测定吸附等温线之后,对其进行修正。
IUPAC 在2015 年的报告中指出:最近的研究已经证实,具有极窄微孔的纳米多孔固体可以在液氮温度下吸附无法忽略的氦气量(氦截留)。如果在分析之前不除去被截留的氦气,可以显著影响在超低压范围的吸附等温线的形状。因此,建议在继续分析之前,应当至少将样品放在室温下使氦气溢出后,将其脱气。
氦气作为单原子分子,直径只有0.26nm,远小于氮气分子的截面积,可以进入氮气不可能进入的极细孔道。美国康塔仪器公司的研究表明,用氦气在液氦温度下分析活性炭纤维的BET 比表面比在液氮温度下用氮气表征,其BET 比表面积值增加1/3。
45. 什么是冷自由空间?什么是暖自由空间?冷暖自由空间的相对大小有什么意义?
在分析过程中,样品管是部分浸没在冷浴(如液氮)中的,因此总自由空间是由冷自由空间和暖自由空间两部分组成的。其中浸没于液氮液位下的部分称为冷自由空间(冷域,cold-zone),在液位以上处于室温环境部分称为暖自由空间(暖域,warm-zone)。
自由空间是系统中吸附质分子传递、扩散的区域。液氮温度(77K)下同体积所包含的分子数是室温300K 的4 倍,可以说在整个自由空间中冷自由空间对死体积的贡献远大于暖自由空间。冷自由空间越小,或者暖自由空间中所含气体分子数越多,压力测量也就越准确。
46. 为什么要进行液氮或液氩的液位控制?控制液位都有哪些方法?
在一个敞开的杜瓦中,制冷剂如液氮和液氩是挥发的。因此,样品管颈的制冷剂液位是不断降低的,从而造成冷域和暖域体积的连续变化。为避免系统自由空间受冷浴温度及冷浴液位的影响,在测量中的关键就是保持样品管颈与制冷剂液位的相对恒定。一般要求,至少浸没样品20mm,并保持液面恒定,波动不超过1~2mm。在实际操作中,有两种不同的方式达到上述目的:
(1) RTD 实时反馈伺服方式, 即利用包括液位传感器和自动电梯在内的实时反馈伺服系统调整冷浴液位并保持冷自由空间最小化。实验证明,用液位传感器控制浸于液氮中的样品池液位,得到的样品管中的氮气压力(大约295 毫米汞柱)与时间的函数关系见右图。液氮液位的任何变化都会造成管内气压的变化。压力恒定的结果清楚地说明,液位控制伺服反馈系统补偿了液氮蒸发的损失,极好地控制了样品管中的死体积(最小的“冷域”和最大的“暖域”)保持恒定。
(2) 夹套方式,即用高分子多孔材料包裹样品管颈,通过毛细管蒸腾作用保持液位,也就是用较大冷自由空间换取冷浴液位高度的恒定。
47. 什么是饱和蒸汽压?为什么要测饱和蒸汽压?
在液体(或者固体)的表面存在着该物质的蒸汽,这些蒸汽对液体(或固体)表面产生的压强叫作该液体(或固体)的蒸汽压。在一定温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强就是饱和蒸汽压。
当样品管浸于制冷剂(如液氮)中,样品管中的纯吸附物质(氮气)呈现的饱和平衡蒸汽压用P0 表示。液态纯物质蒸汽所具有的压力为其饱和蒸汽压力时,汽液两相即达到了相平衡。所以,真空饱和吸附,吸附压力不可能大过吸附物质的饱和蒸汽压,即相对压力(P/P0)不可能大于1。
饱和蒸汽压是吸附物质的一个重要性质,它的大小取决于物质的本性和温度,与吸附层厚度、孔填充压力以及孔中的毛细管凝聚有关。 饱和蒸汽压越大,表示该物质越容易挥发。只有得到准确的气体饱和蒸汽压,通过吸附量与相对压力P/P0 关系的精确表征才能进行准确的孔径及比表面积分析。
48. 如何测量饱和蒸汽压?
饱和蒸汽压的大小与温度相关。有多种实验方法可以用于计算物理吸附过程中的饱和蒸汽压。但是准确度最高的方法是在物理吸附实验过程中在独立的P0 管中连续测量饱和蒸汽压。
通常吸附等温线都是在液氮(77.35K)或液氩(87.27K )温度下测量,液氮、液氩放置于杜瓦瓶中,保持常压。此时液体温度不仅与压力,更与液体纯度相关。水蒸汽、氧气以及空气中的其它气体组分均可影响液体纯度,当液体纯度降低则液体温度也会随之升高,温度升高幅度0.1~0.2K 可导致饱和蒸汽压上升10~20torr。在物理吸附过程中,当相对压力为0.95 时,饱和蒸汽压的误差达5 torr 时,会导致孔径计算的近10 %误差。因此在物理吸附过程中准确、实时地测量饱和蒸汽压是非常重要的。
具有独立饱和蒸汽压传感器的仪器,能够实时监测P0 的变化,而对实验过程不产生干扰。但是,若相对压力中的饱和蒸汽压并非取自该点平衡时刻的饱和蒸汽压,则测量的精度依然会有很大折扣,这对微孔材料的微孔分布分析有着重要意义。
49. 物理吸附分析系统的进气模式都有哪些?各有什么特点?
由于物理吸附分析系统测定的基础数据是平衡吸附量与压力的关系,因此我们必须设定一个量值,而测定另一个量值。这样,就产生了两种进气模式:
(1) 定投气量模式(设定纵坐标,测量横坐标):
由仪器采集压力信息的方法称之为“定投气量方式”。该方法对于仪器硬件及固件设计的要求较低,是各个生产厂家广泛使用的方法。该方法的一个亮点是可以扩展进行吸附动力学的相关研究以及低温反应的相关研究,但对于常规的微孔孔径分布分析,定投气量方式存在如下不确定性:
如果投气量设置过小,得到的等温线固然细节丰富,但是却与实验所花时间呈反比。如果投气量设置偏大,等温线上的部分信息就会丢失。
投气量设置偏大,可以缩短测试时间,但并没有达到真正的吸附平衡,造成吸附等温线向右“漂移”,导致微孔分析的误差(见图49-1)。
IUPAC 在2015 年的报告中指出:太短的平衡时间会导致未平衡的数据生成,等温吸附线移向过高的相对压力。因为在窄微孔中的平衡往往是非常慢的,未平衡往往是在等温线的极低相对压力区域内容易发生的问题(见图49-2)。
(2) 定压力方式(设定横坐标,测量纵坐标):
由仪器采集并计算饱和吸附量的方法称之为“定压力方式”,该方法最大的优点是:由仪器内置程序计算各定义压力下的吸附量,这种方法对于吸附量未知的样品可以既快又准地得到吸附等温线,尤其对于未知的微孔样品。
快速、准确地测量与数据的准确性同样具有重要实践意义。但是,定压力方式对内置程序设计要求极高,尤其是对于微孔定压力测量(实验起始相对压力需达到10-7~10-5 量级),必须同时考虑饱和蒸汽压、系统体积、样品量等信息,具有其复杂性。不正确的“定压力方式”宏命令编程设计很容易导致等温线测量的偏差。
50. 吸附平衡条件是如何设置的?
在静态容量法物理吸附实验中,所谓吸附平衡是在一定的扩散时间内,体系中气体压力变化始终在允许误差范围内的状态。它与投气方式共同组成了物理吸附仪器测量准确度中最核心的环节。
若平衡时间不够,则所测得的样品吸附量或脱附量小于达到平衡状态的量,而且前一点的不完全平衡还会影响到后面点的测定。例如,测定吸附曲线时,在较低相对压力没有完成的吸附量将在较高的压力点被吸附,这导致等温吸附线向高压方向位移。由于同样的影响,脱附曲线则向低压方向位移,形成加宽的回滞环,或者产生不存在的回滞环。 对于微孔测量,由于其孔径较小,需要的平衡时间相应增加。
图50 使用定投气量方法进行柔性MOF材料吸附动力学研究中的代表性数据。
其中各条曲线均为仪器按设置投气量投气后,系统压力随时间的变化。起始段(< 10 秒)的压力变化一般归属为气体扩散及热力学影响,之后的压力变化则属于由材料吸附性质引起的压力变化。
绿色曲线代表平衡相对压力为5.17 x 10-4时的系统压力变化曲线,可以看到该曲线由前段的平台期(时间10~ 100 s量级)、相对压力下降区段及最终平衡区段(时间 > 5000 s)组成。只有当进气后至少需要5000 s以上才有可能达到真正的吸附平衡,而在平台期,无论其压力变化是否在测量误差许可范围之内,均不代表材料真实的吸附状态。应对材料以上特性,在设置平衡时间时必须能够将平衡时间设置在5000 s以上才能够得到材料真正的吸附信息。
如果说平衡时间(Equilibriumtime)规定的是达到平衡的最低时间要求,那么平衡压力误差(Tolerance)则是用于认定达到平衡时允许压力变化范围的参数。
这两个参数共同决定了吸附平衡条件。随着各种特色新材料的快速涌现,吸附平衡条件设置必须具有足够的灵活性以适应不同类型材料分析的需求。例如,对于柔性MOF材料(也有人称之为会呼吸的材料),由于其孔道结构变化需要相当长的时间,在实验平衡条件设置时,必须能够针对具体材料的孔道结构变化时间设定仪器的平衡时间(见图50)。
因此,能否进行灵活的吸附平衡条件设置就成了衡量物理吸附仪器测量准确度的一个重要标准,这是进行高端复杂孔道材料研究的必要条件。
经典专著推荐:《Adsorption by Powders and Porous Solids-Principles, Methodology and Applications》版权声明
本文来源:整理自最新出版的物理吸附基本知识的普及性读物《物理吸附100问》,由吸附领域专家杨正红编著。仅用于学术分享