FIB-SEM原理介绍

2022-12-01
铄思百检测

聚焦离子束扫描电子显微镜(Focused Ion Beam-Scanning Electron Microscope,简称FIB-SEM)双束系统是指同时具有聚焦离子束(FIB)和扫描电子显微镜(SEM)功能的系统。通过结合相应的气体沉积装置,纳米操纵仪,各种探测器及可控的样品台等附件,成为一个集微区成像、加工、分析、操纵于一体的分析仪器,广泛应用于物理、化学、生物、新材料、农业、环境和能源等众多领域。

FIB-SEM原理

FIB-SEM双束系统是将FIB系统与传统的扫描电子显微系统成一定角度同时安装在一台设备上,并将样品调整至共心高度的位置。这样在测试过程中,可以通过旋转样品台,使样品表面垂直于电子束或离子束,最终实现电子束实时观察及离子束切割或微加工的功能。

在常见的双束FIB-SEM系统中:电子束垂直于样品台,离子束与样品台呈一定的夹角,工作的过程中需要把样品台旋转至52度位置,此时离子束与样品台处于垂直状态,便于进行加工,而电子束与样品台呈一定的角度,可以观测到截面内部的结构。

图1. FIB-SEM双束系统的结构示意图

离子镜筒的结构示意图如下图所示。目前应用最广泛的是液态镓(Ga)离子源,因为Ga元素具有低熔点、低蒸气压的特点,同时Ga离子易获得高密度束流,可以刻蚀大部分材料。Ga加热后会向下流到钨针尖尖端,由于表面张力和相反方向电场力的作用,Ga会在针尖形成一个尖端半径仅约2 nm的锥形体; 随后,作用在尖端上的巨大电场(>108V/cm)会使Ga原子电离并发射出来。Ga离子束通过静电透镜被聚焦在样品上并进行扫描,与样品发生相互作用,收集产生的各种信号,从而实现对样品的精细加工和显微分析。

图2. FIB-SEM 双束系统工作原理示意图

FIB-SEM功能及应用

1、FIB-SEM的主要功能包括:

①电子束成像,用于定位样品、获取微观结构和监测加工过程;

②离子束刻蚀,用于截面观察和图形加工;

③气体沉积,用于图形加工和样品制备;

④显微切割制备微米大小纳米厚度的超薄片试样(厚度小于<100 nm),用于后续的TEM和同步辐射STXM等相关分析;

⑤显微切割制备纳米尺寸的针尖状样品,用于后续的APT分析,获取其微量元素和同位素信息;

⑥综合SEM成像、FIB切割及EDXS化学分析,对试样进行微纳尺度的三维重构分析等。

2、FIB-SEM的主要应用

①微纳结构加工;

②截面分析;

③TEM样品制备;

④三维原子探针样品制备;

⑤芯片修补与线路修改

⑥光刻掩膜版修复;

⑦三维重构分析等。

FIB-SEM案例分析

1、微纳结构加工

FIB系统无需掩膜版,可以直接刻出或者在GIS系统下沉积出所需图形,利用FIB系统已经可以制备微纳米尺度的复杂的功能性结构,包括纳米量子电子器件,亚波长光学结构,表面等离激元器件,光子晶体结构等。通过合理的方法不仅可以实现二维平面图形结构,甚至可以实现复杂三维结构图形的制备。

2、截面分析

利用FIB溅射刻蚀功能可定点切割试样并观测横截面(cross-section)来表征截面形貌尺寸,还可配备与元素分析(EDS)等相结合的体系来分析截面成分。普遍应用于芯片, LED等失效分析方面,普通IC芯片在加工时存在问题,采用FIB可迅速定点地分析缺陷产生的原因并改进工艺流程,FIB系统已成为当代集成电路工艺线必不可少的设备。

3、TEM样品制备

TEM样品制备可分为非提取法和提取法。非提取法是在经过预减薄的样品上,通过对感兴趣区域进行定点FIB加工以制取电子透明的观测区,如下图所示。


采用提取法提取TEM样品时,最终减薄工艺流程与能否获得优质TEM照片有直接联系。若将抽取的试样整体变薄易产生试样弯曲问题。并且利用能增强试样自支撑性H型或者X型对试样进行减薄,可以避免试样弯曲问题。下图是用H型减薄方法制备TEM样品SEM照片。

4、三维原子探针样品制备

对原子探针样品的制备要求与TEM 薄片样品很接近方法也类似。首先选取感兴趣的取样位置,在两边挖V 型槽,将底部切开后,再用纳米机械手将样品取出。转移到固定样品支座上,用Pt 焊接并从大块样品切断。连续从外到内切除外围部分形成尖锐的针尖。最后将样品用离子束低电压进行最终抛光,消除非晶层,和离子注入较多的区域。

5、芯片修补与线路修改

利用FIB中溅射功能可以切断某处连线,也可以利用它的沉积功能可以把某地原先没有连接到的地方连接到一起,这样就可以改变线路连线的方向,可以发现,诊断出线路中存在的误差,并能直接对芯片中的误差进行校正,减少研发成本并加快研发进程,由于它可以免去原形制备及掩模变更所需时间及成本。

6、三维重构分析

三维重构分析目的主要是依靠软件控制FIB逐层切割和SEM成像交替进行,最后通过软件进行三维重构。FIB三维重构技术与EDS有效结合使得研究人员能够在三维空间对材料的结构形貌以及成分等信息进行表征;和EBSD结合可对多晶体材料进行空间状态下的结构、取向、晶粒形貌、大小、分布等信息进行表征。




免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。