X射线荧光光谱仪测试原理

2021-10-19
铄思百检测

X射线荧光光谱仪原理及主要技术指标对比

X射线荧光光谱仪原理及主要技术指标对比


X射线荧光光谱仪(简称:XRF)X荧光光谱仪主要由激发源(X射线管)和探测系统构成。其原理就是:X射线管通过产生入射X射线(一次X射线),来激发被测样品。 受激发的样品中的每一种元素会放射出二次X射线(又叫X荧光),并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量或者波长。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。 元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,因此,只要测出荧光X射线的波长或者能量,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X荧光光谱仪。由于X荧光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。

下图是这两类仪器的原理图。

X射线荧光光谱仪原理及主要技术指标对比


能量色散荧光光谱仪

能量色散法是将X射线激发被测所有元素的荧光简单过滤后,全部进入到检测器中,利用仪器和软件来分出其中的光谱。如测的为元素周期表中相邻的两个元素,会因光谱重叠而产生测量误差。能量色散型仪器最大的优点是不破坏被测的材料或产品,也不需要专业人员操作,缺点是对铬和溴是总量测定(一般不影响使用,因为很多情况可以判定,如测铬总量超标,常可知是不是六价铬超标,特别是溴,如被作为阻燃剂加入,不管是那种溴,总量超标就不合格)。

波长色散荧光光谱仪

波长法是因其激发出的荧光足够强,进到仪器中用来分析的光谱是单一元素(“过滤”了不需测的元素),不含其它元素的光谱,所以测量数据很准确。这种仪器的灵敏度比能量色散型高一个数量级,也就是说,所测的数据并不存在“灰色地域”,不存在测定后还需拿到检测机构复检。缺点是,波长法需将被测材料粉碎压制成样本后测才准确。所以,用在材料厂最适合。如不制成样本(非破坏),会因材料表面形状不同而产生不同误差。仪器操作也不需要专业人员。

能量色散光谱仪(ED-XRF)和波长色散光谱仪(WD-XRF)比较

项目

波长色散型X荧光

能量色散型X荧光

原理

X荧光经晶体分光,在不同衍射角测量不同元素的特征线

X荧光直接进入检测器,经电子学系统处理得到不同元素(不同能量)的X荧光能谱

结构

为满足全波段需要,配置多块晶体,根据单道扫描和多道同时测定的需要,设置扫描机构和若干固定通道

无扫描机构,只用一个检测器和多道脉冲分析器,结构简单得多,无转动件,可靠性高

X光管

高功率,要高容量冷却系统,X光管寿命短

功率低,不需冷却水,X光管寿命长

检测器

正比计数器,和λ、晶体、检测器有关

Si(pin)/SDD

灵敏度

Ug/g级

轻基体ug/g级,其它10~102ug/g级

准确度

取决于标样

取决于标样

精密度

很好

低浓度时不如WD

系统稳定性

需作周期性漂移校正,定期作工作曲线

好,工作曲线可长时间使用

方便性

一般

分析速度

单道慢,多道快

人员要求

较高

一般

样品表面

要求平坦

要求不高

价格

¥120~250万/台(其中单道¥120~180万/台)

¥30~70万/台

现将两种类型X射线光谱仪的主要部件及工作原理叙述如下:

  1. X射线管

X射线荧光光谱仪原理及主要技术指标对比


两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。       
  X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。
  X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。

2.分光系统

X射线荧光光谱仪原理及主要技术指标对比


分光系统的主要部件是晶体分光器,它的作用是通过晶体衍射现象把不同波长的X射线分开。根据布拉格衍射定律2dsinθ=nλ,当波长为λ的X射线以θ角射到晶体,如果晶面间距为d,则在出射角为θ的方向,可以观测到波长为λ=2dsinθ的一级衍射及波长为λ/2, λ/3等高级衍射。改变θ角,可以观测到另外波长的X射线,因而使不同波长的X射线可以分开。 分光晶休靠一个晶体旋转机构带动。因为试样位置是固定的,为了检测到波长为λ的荧光X射线,分光晶体转动θ角,检测器必须转动2θ角。也就是说,一定的2θ角对应一定波长的X射线,连续转动分光晶体和检测器,就可以接收到不同波长的荧光X射线见(图10.5)。一种晶体具有一定的晶面间距,因而有一定的应用范围,目前的X射线荧光光谱仪备有不同晶面间距的晶体,用来分析不同范围的元素。上述分光系统是依靠分光晶体和检测器的转动,使不同波长的特征X射线接顺序被检测,这种光谱仪称为顺序型光谱仪。另外还有一类光谱仪分光晶体是固定的,混合X射线经过分光晶体后,在不同方向衍射,如果在这些方向上安装检测器,就可以检测到这些X射线。这种同时检测不波长X射线的光谱仪称为同时型光谱仪,同时型光谱仪没有转动机构,因而性能稳定,但检测器通道不能太多,适合于固定元素的测定。

X射线荧光光谱仪原理及主要技术指标对比


此外,还有的光谱仪的分光晶体不用平面晶体,而用弯曲晶体,所用的晶体点阵面被弯曲成曲率半径为2R的圆弧形,同时晶体的入射表面研磨成曲率半径为R的圆弧,第一狭缝,第二狭缝和分光晶体放置在半径为R的圆周上,使晶体表面与圆周相切,两狭缝到晶体的距离相等(见图10.6),用几何法可以证明,当X射线从第一狭缝射向弯曲晶体各点时,它们与点阵平面的夹角都相同,且反射光束又重新会聚于第二狭缝处。因为对反射光有会聚作用,因此这种分光器称为聚焦法分光器,以R为半径的圆称为聚焦圆或罗兰圆。当分光晶体绕聚焦圆圆心转动到不同位置时,得到不同的掠射角θ,检测器就检测到不同波长的X射线。当然,第二狭缝和检测器也必须作相应转动,而且转动速度是晶体速度的两倍。聚焦法分光的最大优点是荧光X射线损失少,检测灵敏度高。

3.检测记录系统

X射线荧光光谱仪原理及主要技术指标对比


X射线荧光光谱仪用的检测器有流气正比计数器和闪烁计数器。上图是流气正比计数器结构示意图。它主要由金属圆筒负极和芯线正极组成,筒内充氩(90%)和甲烷(10%)的混合气体,X射线射入管内,使Ar原子电离,生成的Ar+在向阴极运动时,又引起其它Ar原子电离,雪崩式电离的结果,产生一脉冲信号,脉冲幅度与X射线能量成正比。所以这种计数器叫正比计数器,为了保证计数器内所充气体浓度不变,气体一直是保持流动状态的。流气正比计数器适用于轻元素的检测。

X射线荧光光谱仪原理及主要技术指标对比


另外一种检测装置是闪烁计数器如上图。闪烁计数器由闪烁晶体和光电倍增管组成。X射线射到晶体后可产生光,再由光电倍增管放大,得到脉冲信号。闪烁计数器适用于重元素的检测。除上述两种检测器外,还有半导体探测器,半导体探测器是用于能量色散型X射线的检测(见下节)。这样,由X光激发产生的荧光X射线,经晶体分光后,由检测器检测,即得2θ-荧光X射线强度关系曲线,即荧光X射线谱图,下图是一种合金钢的荧光X射线谱。

X射线荧光光谱仪原理及主要技术指标对比


4. 能量色散谱仪
  以上介绍的是利用分光晶体将不同波长的荧光X射线分开并检测,得到荧光X射线光谱。能量色散谱仪是利用荧光X射线具有不同能量的特点,将其分开并检测,不必使用分光晶体,而是依靠半导体探测器来完成。这种半导体探测器有锂漂移硅探测器,锂漂移锗探测器,高能锗探测器等。X光子射到探测器后形成一定数量的电子-空穴对,电子-空穴对在电场作用下形成电脉冲,脉冲幅度与X光子的能量成正比。在一段时间内,来自试样的荧光X射线依次被半导体探测器检测,得到一系列幅度与光子能量成正比的脉冲,经放大器放大后送到多道脉冲分析器(通常要1000道以上)。按脉冲幅度的大小分别统计脉冲数,脉冲幅度可以用X光子的能量标度,从而得到计数率随光子能量变化的分布曲线,即X光能谱图。能谱图经计算机进行校正,然后显示出来,其形状与波谱类似,只是横座标是光子的能量。
  能量色散的最大优点是可以同时测定样品中几乎所有的元素。因此,分析速度快。另一方面,由于能谱仪对X射线的总检测效率比波谱高,因此可以使用小功率X光管激发荧光X射线。另外,能谱仪没有光谱仪那么复杂的机械机构,因而工作稳定,仪器体积也小。缺点是能量分辨率差,探测器必须在低温下保存。对轻元素检测困难。

5.样品制备
  进行X射线荧光光谱分析的样品,可以是固态,也可以是水溶液。无论什么样品,样品制备的情况对测定误差影响很大。对金属样品要注意成份偏析产生的误差;化学组成相同,热处理过程不同的样品,得到的计数率也不同;成分不均匀的金属试样要重熔,快速冷却后车成圆片;对表面不平的样品要打磨抛光;对于粉末样品,要研磨至300目-400目,然后压成圆片,也可以放入样品槽中测定。对于固体样品如果不能得到均匀平整的表面,则可以把试样用酸溶解,再沉淀成盐类进行测定。对于液态样品可以滴在滤纸上,用红外灯蒸干水份后测定,也可以密封在样品槽中。总之,所测样品不能含有水、油和挥发性成分,更不能含有腐蚀性溶剂。

6.定性分析
  不同元素的荧光X射线具有各自的特定波长,因此根据荧光X射线的波长可以确定元素的组成。如果是波长色散型光谱仪,对于一定晶面间距的晶体,由检测器转动的2θ角可以求出X射线的波长λ,从而确定元素成分。事实上,在定性分析时,可以靠计算机自动识别谱线,给出定性结果。但是如果元素含量过低或存在元素间的谱线干扰时,仍需人工鉴别。首先识别出X射线管靶材的特征X射线和强峰的伴随线,然后根据2θ角标注剩斜谱线。在分析未知谱线时,要同时考虑到样品的来源,性质等因素,以便综合判断。

7.定量分析
  X射线荧光光谱法进行定量分析的依据是元素的荧光X射线强度I1与试样中该元素的含量Wi成正比: Ii=IsWi
式中,Is为Wi=100%时,该元素的荧光X射线的强度。根据上式,可以采用标准曲线法,增量法,内标法等进行定量分析。但是这些方法都要使标准样品的组成与试样的组成尽可能相同或相似,否则试样的基体效应或共存元素的影响,会给测定结果造成很大的偏差。所谓基体效应是指样品的基本化学组成和物理化学状态的变化对X射线荧光强度所造成的影响。化学组成的变化,会影响样品对一次X射线和X射线荧光的吸收,也会改变荧光增强效应。例如,在测定不锈钢中Fe和Ni等元素时,由于一次X射线的激发会产生NiKα荧光X射线,NiKα在样品中可能被Fe吸收,使Fe激发产生FeKα,测定Ni时,因为Fe的吸收效应使结果偏低,测定Fe时,由于荧光增强效应使结果偏高。但是,配置相同的基体又几乎是不可能的。为克服这个问题,目前X射荧光光谱定量方法一般采用基本参数法。该办法是在考虑各元素之间的吸收和增强效应的基础上,用标样或纯物质计算出元素荧光X射线理论强度,并测其荧光X射线的强度。将实测强度与理论强度比较,求出该元素的灵敏度系数,测未知样品时,先测定试样的荧光X射线强度,根据实测强度和灵敏度系数设定初始浓度值,再由该浓度值计算理论强度。将测定强度与理论强度比较,使两者达到某一预定精度,否则要再次修正,该法要测定和计算试样中所有的元素,并且要考虑这些元素间相互干扰效应,计算十分复杂。因此,必须依靠计算机进行计算。该方法可以认为是无标样定量分析。当欲测样品含量大于1%时,其相对标准偏差可小于1%。

X射线荧光光谱仪主要技术指标对比

项目

XRF 型号

S8 TIGER

ZSX Primus/ZSX Primus II

AXIOS/(AXIOS-ADVANCED)

ADVANT’XP+

XRF1800

生产厂家

德国布鲁克AXS公司
(原德国西门子axs)

日本理学公司

荷兰帕纳科公司

(原荷兰飞利浦公司)

赛默飞世尔

(原瑞士ARL公司)

日本岛津公司

推出时间

2007

2003

2004

2000

1997

最大功率

4 kW

4 kW

4 kW

4.2 kW

4 kW

最大电流

170 mA

150 mA

125mA(160mA)

120 mA(140mA选项)

140 mA(150mA选项)

最大电压

60 kV

60 kV

60 kV

60 kV(70Kv)

60 kV

电流、电压快速切换功能

能,并且能等功率或非等功率切换,遇含量很高的样品时,可自由调节功率

只能等功率切换,遇含量很高的样品时, 需要使用衰减器

只能等功率切换,遇含量很高的样品时,需要使用滤光片

只能等功率切换,遇含量很高的样品时,需要使用滤光片

只能等功率切换,遇含量很高的样品时,需要使用衰减器

能否满功率运行

能,并能长期满功率运行

不能

不能

不能

不能

发生器类型

固态式,模块化设计

油箱式

固态式,一体化设计

固态式,一体化设计

油箱式

发生器稳定性

外电压波动1%时为 优于000005%

外电压波动1%时为 00005%

外电压波动1%时为 000006%

外电压波动1%时为 00001%

外电压波动1%时为 00005%

X

低温光管技术

光管头部增加冷却回路,测量液体、低熔点样品非常安全。灯丝无挥发,光管发光强度不衰减

铍窗厚度

75μm(50μm可选)

75μm(30μm可选)

75μm(50μm可选)

75μm(50μm可选)

75μm

绝缘方式

陶瓷

玻璃

陶瓷

陶瓷

玻璃

样品照射方式

下照式,可测液体

下照式,可测液体/上照射

下照式,可测液体

下照式,可测液体

上照式,不能测液体

初级光路过滤器

10位

4位

4位

3位

5位

滤光片数量

7块

4块

3块

3块

4块

样品进出仪器时保护光管的污染防护屏1

1块

样品进出仪器时保护光谱室的污染防护屏2

1块(选项)

XRF 型号

S8 TIGER

ZSX Primus

AXIOS

ADVANT’XP+

XRF1800

测量过程中保护光管的防污染铍隔离膜

DuraberylliumTM 高强度铍隔离膜(选项)

有(选项),但必须去掉一块滤光片才能安装此铍窗

测量过程中保护光谱室防止污染以及在不同类型样品间快速切换、节约氦气消耗的真空封挡,

封挡材料

高透光性、高强度的高分子材料

低透光性铍窗

低透光性铍窗

准直器面罩尺寸

34mm, 28mm, 23mm, 18mm,8mm, 5mm

35mm, 30mm, 20mm, 10mm,1mm, 0.5mm

37mm,30mm, 27mm, 20mm, 10mm, 6mm

38mm, 29mm, 15mm

30mm, 20mm, 10mm,3mm, 0.5mm

准直器交换器位数

最多可安装4个准直器(细、中、粗、超粗),共6种准直器规格可选购

最多可安装3个准直器(细、中、粗)

最多可安装3个准直器(细、中、粗)

最多可安装4个准直器(细、中、粗、超粗)

最多可安装3个准直器(细、中、粗)

晶体交换器位数

8位,16种晶体可选

10位,14种晶体可选

8位,14种晶体可选

9位,

10位,12种晶体可选

弯晶

Ge弯晶,PET弯晶

Ge弯晶,PET弯晶

测量Al、Si、P、S元素具有最好的长期稳定性、没有PET容易潮解和老化现象,是水泥、矿物、玻璃、地质、铝业应用的专用晶体

XS-CEM晶体

光谱室温度稳定性

±0.05℃

±0.1℃

±0.05℃

±0.3℃

±0.3℃

测角仪

定位方式

θ/2θ分别驱动,光学定位系统

θ/2θ分别驱动,机械定位

θ/2θ分别驱动,直接光学位置传感器DOPS系统

θ/2θ分别驱动,莫尔条纹定位

θ/2θ分别驱动,机械定位

最小步长

0.0005°



0.001°

0.002°

XRF 型号

S8 TIGER

ZSX Primus

AXIOS

ADVANT’XP+

XRF1800

角度准确度

< +/-0.001°

+/- 0.005°

+/- 0.0025°

+/- 0.002°


角度重现性

< +/-0.0001°

+/- 0.0005°

+/- 0.0001°

+/- 0.0002°

+/- 0.0003°

最大扫描速度

1200°/分

240°/分

°/分

327°/分

300°/分

最大转角速度

2400°/分

1400°/分

°/分

4800°/分

1200°/分

检测系统

计数器类型

流气正比FC、封闭正比SFC、闪烁SC

流气正比FC、闪烁SC

流气正比FC(可串联封闭正比SFC)、闪烁SC

流气正比FC、闪烁SC

流气正比FC、闪烁SC

计数器窗膜厚度

0.6μm

0.6μm

1.0μm

0.9μm

1.0μm

多道分析器

512道


512道

512道


FC &SFC

线线性范围

大于3Mcps

最大2Mcps

最大3Mcps

最大2Mcps

最大2Mcps

动动态匹配TM技术

大于10Mcps

转转动范围

17 ~ 152°

13 ~ 148°

13 ~ 148°

17 ~ 153°

7 ~ 148°

SC

线线性范围

大于2.0Mcps

1.5Mcps

1.5Mcps

1.5Mcps

1Mcps

动动态匹配TM技术

大于10Mcps

转转动范围

0 ~ 115°

5 ~ 118°

8 ~ 104°

0 ~ 115°

0 ~ 118°

进样系统

软件

样品最大尺寸

Φ52x47mm

Φ52x47mm

Φ51x40mm

Φ52x30mm

Φ51x38mm

样品自旋速度

30转/分

30转/分

30转/分

30转/分

60转/分

自动进样器

样品放在样品盒中测量时,最多可放60个样品;直接将40mm直径的样品放在进样器上时,可放108个样品;样品盒和直接放样的混合进样器可放82个样;托盘式进样器可放75个样品。

48位X-Y二维进样器

最多可放8个进样条,当样品放在样品盒中测量时,最多可放64个样品;当直接将25mm直径的熔片样放置在进样条上时,最多可放168个样。

1位手动;12位转盘进样器;98位X-Y二维进样器

8位转盘进样器

样品类型自动识别功能

XRF 型号

S8 TIGER

ZSX Primus

AXIOS

ADVANT’XP+

XRF1800

定性、定量分析软件

SPECTRAplus V2分析软件

SuperQ

WinXRF

无标样分析软件

QUANT EXPRESSTM无标样软件包,有扫描测量模式、定点测量模式和结合测量模式

SQX无标样分析软件,只有扫描测量模式,没有定点测量模式

IQ+无标样软件,有扫描测量模式和定点测量模式

QuantAS为扫描测量模式

Uniquant为定点测量模式

只有扫瞄测量模式

无标样分析速度

最快小于2分钟

最快15分钟以上

最快2分钟以上

最快10分钟以上

最快15分钟以上

定量分析与无标样分析结合模式

动态匹配TM技术

理论α系数法

经验α系数法

变动理论α系数法

厚度修正功能

制样方法修正

自诊断软件

S8 Tools 软件

远程诊断

远程服务-维护-支持软件

多层膜分析软件

MLPLUS

氧化物分析软件

GEO-QUANT M软件

WROXI氧化物软件包

地质样品中微量元素专用分析软件

GEO-QUANT T软件

Pro-trace软件

水泥分析软件

CEMENT-QUANT软件

RoHS/WEEE软件

RoHS-QUANT软件

油品分析专用软件

PETRO-QUANT软件


金属材料分析软件

METAL-QUAN软件

NiFeCo软件包,铜基软件包


XRF 型号

S8 TIGER

ZSX Primus

AXIOS

ADVANT’XP+

XRF1800

计算机

主机

戴尔计算机,四核,最新配置

计算机国内供货

戴尔计算机,双核,最新配置

计算机国内供货

计算机国内供货

显示器

19"液晶

19"液晶

19"液晶

19"液晶

17"液晶


常规操作第二控制计算机

触屏控制TM

安全标准


质量及安全认证

通过ISO9001及EN29001认证

通过ISO9001认证

通过ISO9001认证

通过ISO9001认证

通过ISO9001认证

欧洲安全认证

通过CE认证

未通过CE认证

通过CE认证

通过CE认证

未通过CE认证

射线防护认证

DIN 54113等





尺寸

高x宽x深(mm)

1350 x 840 x 1040


1510 x 840 x 980

9400 x 830 x 1090

1770 x 1080 x 1350

重量

千克

476kg


550kg

450kg

760kg


以上是XRF,X射线荧光光谱仪的介绍,更多测试联系铄思百检测!


来源:铄思百检测